IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Density correlations of magnetic impurities and disorder

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 7291
(http://iopscience.iop.org/0305-4470/30/21/007)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.110
The article was downloaded on 02/06/2010 at 06:04

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger30 (1997) 7291-7300. Printed in the UK PIl: S0305-4470(97)80803-7

Density correlations of magnetic impurities and disorder

Jean Desbois, Cyril Furtlehner andehane Ouvry

Division de Physique Téorique, Unigé de Recherche des UniveésitParis 11 et Paris 6 asseei
au CNRS, IPN, Orsay Fr-91406, France

Received 9 January 1996, in final form 2 July 1997

Abstract. We consider an electron coupled to a random distribution of point vortices in the
plane (magnetic impurities), with a spatial probability distribution governed by Bose or Fermi
statistics at a given temperature. We analyse the effect of the statistics of the magnetic impurities
on the partition function and the density of states (DOS) of a test particle. Comparison is made
with the Poisson distribution, i.e. Bose or Fermi statistics at infinite temperature. We show in
particular that, for the zero-temperature Fermi distribution, the DOS always exhibits oscillations,
whatever the strength of the magnetic disorder, contrarily to the Poissonian case. A diagram
describing isolated impurities versus Landau level oscillations is proposed.

1. Introduction

Recently, the problem of a two-dimensional electron gas coupled to a static random magnetic
field has been a subject of interest [1-5]. Particular attention has been paid to localization
properties of such systems. In the case of Gaussian disorder with zero mean, all states seem
to be localized [2]. In contrast, they are delocalized in the case of a uniform magnetic field.
Therefore, the question arises about the role played by a mean-field description of a random
magnetic field [3, 4].

In [2], on the one hand, a Gaussian-disordered magnetic field was considered, on top
of a constant homogeneous magnetic field. A semiclassical analysis indicated that the
broadening of the Landau levels increased with the energy, so that the DOS oscillations
get exponentially damped. In [5], on the other hand, a Harper model was studied, with a
random flux per plaquette. Similar results were obtained via numerical simulations, with a
resulting flattening of the DOS with increasing disorder.

We are presently interested in a two-dimensional model for an electron of charge
(test particle) coupled to a random magnetic field [4] consisting of a random distribution
of infinitely thin vortices, with an average density Each vortex carries a flup and
modelizes some sort of magnetic impurity, characterized by the dimensionless Aharonov—
Bohm couplinge = e¢/27 (i.e. ¢ in unit of the quantum of fluxz = 1). The model is
periodic ina with period 1 and since there is no privileged orientation of the plane, it is
invariant by changingr into —«, implying thata can be restricted to the interval,[g)].

Random magnetic impurity systems are different from [2, 5] because the magnetic field
is generated by a random distribution of point fluxes, rather than by a continuum random
field or random fluxes through the plaquettes of a lattice. In order to study these systems,
one may perturbatively evaluate énthe average one-electron partition function. It gives
information on the average DOS, since it is its Laplace transform.
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In [4], we focused on magnetic impurities obeying a Poisson distribution. The main
conclusions were:

e the DOS is a function of /p and«, so that physical properties of the model depend
only ong;

e in the limite — 0 (andp — ©0), the DOS exhibits a Landau levels spectrum for the
average magnetic field with degeneraay by unit volume;

o for o = % the DOS is analytically shown to be a monotonically increasing function
of E/p, without any Landau level. Moreover, it is characterized only by a depletion of
states at the bottom of the spectrum of a Lifschitz type.

So we could infer the existence of a critical vatuedistinguishing between two regimes
of the model:

e a Landau regime fotr < «., characterized by Landau oscillations of the DOS where
the mean magnetic field overbalances disorder. By Landau oscillations, we mean that the
DOS is not monotonically increasing, and thus exhibits broadened Landau levels.

e a disordered regime far > «., without Landau oscillations in the spectrum.

Analytical and numerical results showed that> 0.29, and a numerical investigation
of the DOS gaver, >~ 0.35.

In this paper, we consider the random magnetic impurities system as a gas of particles
with a distribution obeying Fermi or Bose statistics at a temperafireWhat we have
in mind (especially in the Fermi case) is to study the effect of density correlations of
the impurities on the DOS. With Fermi statistics, we aim to homogeneize the impurity
configurations by varyind@,,, considered here as an additional disorder parameter. We expect
that this is going to affect the ‘transition’ described above. In our opinion, this approach for
studying non-local correlations of impurities should be relevant for real disordered systems.
In particular, we should expect, on a physical basis, impurities to repel each other, and a
way to model this situation is precisely to consider impurities as a gas of fermions.

We will first properly define the perturbative expansion of the average partition function.
Then, we will explicitly compute at orde®? the contributions to the average partition
function. At that order we can explicitly see the relative contribution of the mean magnetic
field and its fluctuations, and have a first insight into the effect of density correlation on
disorder. We will generalize these considerations at any order, ifor Fermi statistics
at 7, = 0, to see how density correlations (repulsive for fermions) reduce the fluctuation
contribution. Our main result will be that in the Fermi case, at zero temperature, the average
DOS always displays Landau-like oscillations. Thus, for this type of impurity distribution,
there is no transition between an isolated impurity-disordered regime and a mean magnetic
field regime, contrarily to the Poissonian case.

2. The model

2.1. General formalism

Let us consider an electron coupled to a random magnetic field given by a distrilptipn
of magnetic impurities. This means thatr) dr is the number of impurities at position
in the infinitesimal volume &. The Hamiltonian is given by

H—( —afdzrp(mkx(r_,:/)) F 2 p(r) ()
7| m

where we have explicitly taken into account the coupling of the magnetic field to the spin-up
(—) or down (+) degree of freedom of the electron.
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In the case of a discrete distributigi{r) = >, §(r — r;), i.e. points randomly dropped
on the plane, where the indéxndices the impurities, the spin term is a sum of contact terms.
It corresponds to a choice of a peculiar self-adjoint extension [6]: in the spin-down case,
the wavefunctions vanish at the location of the impurities (hard-core boundary condition),
whereas in the spin-up case singular wavefunctions are considered at the location of the
impurities (attractive-core conditions). In order to extract the short-distance behaviour of
the wavefunctions, a non-unitary wavefunction redefinition has been used [7]:

N

yn) =] [Ir = ril*dn ). @)

i=1
The generalization of this transformation to the continuous distribytien introduced
in (1) is

Y(r) = g [ ), 3)
The HamiltonianA acting onvy (r) rewrites
_—faa —/d gz Py (4)
z—7
A, = faa +—/d or/p(Z Z) (5)

where the complex coordinates in the plane have been used + iy, 9, = %(8x —idy)
and ¢ dz = d’». H or H can be used indifferently to compute the partition function,
since it is by definition the trace of a function &f. In the sequel we will concentrate
on the spin-down coupling, keeping in mind that the spin-up analysis could be easily done
following the same lines.

Until now the statistical properties of the distributidm;} in p(r) have not been
specified. If a Poissonian distribution is chosen, the statistical propertje@-phre defined
by the cumulants

p(ry) ... p(ry) = pd(ry —r2)d(r2 — r3)...8(re—1 — 7¢). (6)

Here however, we deal with quantum statistics for the impurities themselvegrsdas
to be defined as an operator

p(r) =y (MY (r) @)
with

) = % / Pk a(k)e ™ ®)

v =, [ #ratme ©

at (k) anda(k) are the creation and annihilation Fock space particle operators of momentum
k, with the commutation rules

[a(k), a™ (K)] = 8(k — k') (10)
for bosons, and
{a(k),a™ (K} =8k — k') (11)

1 For a Gaussian magnetic field [2], all the cumulants vanish except the first and second, which has to be contrasted
with the Poissonian cumulants given in (6).
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for fermions.

Thus, the impurities, considered as a quantum gas, have a tempdraamd chemical
potential i, which determines their mean density The average over disorder of an
operatorQ consists of

Rt ®)
where the impurity second-quantized Hamiltonian
2
H, = / d’k (k — u) at(k)a(k) (13)
2m

describes the equilibrium state of the impurity gas in the grand-canonical ensemble. Note
that we consider here quenched impurities, which are in thermodynamical equilibrium.
Note also that the Poissonian distributio® @;) = dr;/V can be seen as the particular
case of Bose distribution &, = 0. The impurities indeed condensate in the zero-energy
N-body wavefunctiony (r1, 2, ..., 7y) = (%)N, leading to theN-impurity Poissonian

distribution dP = y*(ry, 72, ..., PN)V (P, T2, ..., Py) drydry .. dry = ]_[lN:1 d","’ .

We wish to evaluate perturbatively the average one-electron partition function at inverse
temperatured. From (4) one has

B ) 20\ B Bp-1
<r|e—ﬁ”|r>=2(m) /0 dps ... /0 dB, Gpp, (r, TOY T (DY (r)

p=0

aZl + () / 82,;
X A G, T2) . YT @Y ()
i1 — Zl

— Gy, (rp. 1) (14)
ZP

where integrations over the position variablesandr; are implicit. Gg(r1, r2) is the free
electron propagator

zp -

Gplrrmy) = g finrl, (15)

2np

Averaging over disorder yields expressions like
Trie Pyt (rpy () . .. Y)Y (r)]

(p(r)) ... p(rl)) =

Trle-Aut]
which can be evaluated using the contractions
’ ’ de ik(r—r'
tgf ) = Wnwt ) = [ asmde) (16)
+ ’ + / &’k ik(r—r')

g (r,m) = (YT (r)yY((r)) = @nke' 17)

ng stands for the Bose—Einstein (upper sign) or Fermi—Dirac (lower sign) distributions.
1

T W £ 1 (18)
One has the relation

grr r) =gy (r. ) £8(r — 7). (19)

To summarize, the perturbative expansion of the one-electron average partition function
can be represented in terms of Feynmann diagrams given by rules analogous to those of a
finite temperature second-quantized formalism

electron line:Gg(r;, r))
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forward impurity line: g (r/, 7))
backward impurity line:g; (/. 7., ;)
impurity tadpole: gi°(r/, r}) = p
electron-impurity vertex:2 -1 5. .

m Zi—z;
For a given diagram of order, the electron propagates from its initial to its final position
r via r,,r,_1,..., 71, the location of electron-impurity interaction, with temperatures
0, Bp,.... B, B. The p vortices located at position; ...r,, undergo a permutation.

At eacho (i) corresponds a vortex line

backward line ifo (i) > i

forward line ifo (i) < i

and a tadpole it (i) = i.

In the Fermi case, each diagram is affected by the signature of the permutation

The dimensionless parameters at work are the rescaled average impurity dépsity
units of the electron thermal wavelength = 27 8/m, the rescaled average densi§p in
units of the impurity thermal waveleng#f = 27 ,/m, and the Aharonov—Bohm coupling
constanto.

Clearly, one expects that in the lint — 0, i.e. Boltzmann statistics, with uncorrelated
randomly dropped impurities, one recovers the Poisson distribution. Also, as already
advocated above, one expects that in the lifjit> oo, in the Bose case, one has again
the Poisson distribution, whereas the Fermi distribution leads to a less disordered situation.
In the sequel, one will concentrate on the relative interplay between the dimensionless
parameters.?p, 12p, a.

2.2. Mean-field expansion

Consider first diagrams that are entirely built by impurity tadpoles (figueg)1(These
diagrams do not involve the many-body statistical correlations of the impurity distribution,
and are thus independent of the statistics. Therefore, they yield the same contribution as in
the Poisson case [4].

The ordera?(p > 0) term writes

w»_  1&d-p)

W2 (p - D)
Summation ovelp yields, as it should, the partition function per unit volume of the mean
magnetic fielde(B) = 2rpa (i.e. in the mean-field limite — 0, p — o0, pa finite)

> B) 1 e(B)
Zu = Y2 = 5 oo (<8 ) 20
(B) ; (B) o ZSinhﬂ% p| -8 om (20)

(—=22pa)?.

T r

(a)

1
i
|
H
L)
H
H

i
i
1
i
1
I
I
1

o B (©, By B «y OB (y By By @O

Figure 1. Diagrams contributing at second ordea) fnean-field diagramh() disorder diagram.
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where Zgg)) = 1/)2 is the free partition function per unit volume. The positive shift in
the Landau spectrum is a direct manifestation of the hard-core boundary conditions on the
wavefunctions [4].

In the sequel, we will evaluate corrections to the mean-field partition function, which
are responsible for mixing and broadening the Landau levels, and compare them with the
Poissonian case.

2.3. Second-order expansion

To see the effect of fluctuations, we have to evaluate the partition function at least at second
order in«, because the first order does not involve correlations of the magnetic field. Let us
first recall the expression of the partition function up to second orderfor the Poissonian

case [4]

1 1 1
A2Z=1-— A%pa+ - (,\zp)z 2<+>+--- (21)
2 6 Ap

which we can rewrite
©) @ @ 1,2
Z=Zp+Zpg+Zp+ 300"+ (22)
The last term on the right-hand side of (22) represents the first contribution due to
fluctuations and vanishes like/A in the mean-field limito — oo, o — 0, with ap kept
fixed.

The corresponding term in the case of Bose or Fermi statistics is given by the diagram
represented in figure k). Its expression is

D) = :I:( ) / dﬁl/ d,BZ/dzrl d’r, d2rl dzrzGﬁ,,gl(r, 71)85 (17, T5)
><_ 7 -G _p, (11, 72) 87 (15, Tl) Gﬂz(TZa T)

21—

wherez is the fugacity; = e+, In the intervalz e] — 1, 1] one has the expansion

nik) =+ (—2)e ", (23)
As a result
grr 7y =8(r —7)+ Y (—2)"Gpp, (r. 1) (24)
n=1
g 1) =+ (=2)"Gup, (r. 7). (25)
n=1

The densityp is related toz by

1
pP=F In(1+ z2). (26)

v

Using (24), (25), the contributio®(z) of the diagram of figure 1 is

2 2 n+ 1

po mo (_Z) p / Xnp )

D(z)="— — 1- o — 27

@) 2 48, ; n+p ( 0 Xnp +x(1—Xx) 27)
p=1

wherex,, = "2 5.
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At high temperature®, > T), in the Boltzmann limit, i.ez — 0 in both the Bose and
Fermi cases, one gei8(z) — pa?/2, which is precisely the Poisson distribution result.

The correction reads
2

D(z) = p;‘ (1—§Afp)+ (28)

Let us now concentrate on the low-temperature lirdif « 7, x,, — +00). In that
case,D(z) rewrites as

2 (q! )2 cm q m(Dhms1(2)
D@) = [ ZZ( A%p)! (2g + 1)! Coa In(1+z )]4+1] (29)

where the function#, (z)’s are defined in the interval} 1, 1] by

o (—2)"
hq<z>=zl p (30)
and theCt’]"fl’s are the binomial coefficients. The low-temperature limit corresponds to
z — —1 in the Bose case and — +oo in the Fermi case. It happens that (30), and
therefore (29) can be analytically continuated in 1, +oo[ by noticing that
Z

q=1m=0

ho(z) = 11 (31)
and by using the recursive relation
“hy(x
@ = [ 10 a. (32)
0 X
It follows that the expansion
In z)4 E(q/2) g—2n © (_1) 1
R > IINEILC AT A )

n1 z"

( 2 )I n=1

is valid forz > 1.

Which contributions doe®(z) yield in the low T, limit? In the Bose case, some care
is required, since in (29) the limg — 0 cannot be interchanged with summations. We
checked numerically that (29) indeed yields?/2, i.e. the Poissonian result as expected.
In the Fermi case, (29), (33) yield

2 22 2
lim D(z) = pe |:l - i (l—i— Ap—e P — 2\/)L2,0/ ’ dye™ >i| (34)
0

2400 2

At this point one can consider either a low-impurity density lifip <« 1, or a high-
impurity density limita2p > 1. At low densityA?p << 1, one finds that the average
partition function per unit volume rewrites as

30

Comparing with (21), we see that there is ptw? term, a situation quite different from
the Poissonian case, where this term is precisely the leading mean magnetic field term. We
will come back to this point later.

On the other hand, to see how the system reaches the mean-field limit, we have to use
the high-density expansionip > 1). Equation (34) leads to

1 [ 1
_ 70 (1) 2 2
Z_Z(B)+Z(B)+Z<B)+é'0a ( )\,2,0_)\2,0+>+ (36)

where the corrections due to fluctuations at second orderare explicitly given.

1 11
WZ=1- Xpat (/\2 )22<+ p+~-~>+---. (35)
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3. Fermi case at zero temperature: The Landau regime

3.1. The ordered regime

Before the system reaches the mean-field limit (20), we expect [4] an intermediate regime
characterized by smooth Landau oscillations in the spectrum. This intermediate regime
is identified as ordered by opposition to the one with no oscillation (disordered regime).
The ordera? is quite instructive to give information on the way the system reaches the
mean-field limit. Consider indeed the case of Poissonian impurities (22). We obsegrve 1
corrections to the mean field at any order of the perturbative expansiarpifi. On the
other hand, (36) shows corrections to the mean field of ordés Jp). This implies that
the system approaches more rapidly its mean-field limit when the impurities are fermions
at zero temperature, rather than Poissonian. In other words, the system is less disordered,
since a Fermi distribution of impurities is more homogeneous than a Poissonian one.

Let us generalize these considerations at any order of perturbative theoryOne has
to evaluate{p (r1)p(r2) ... p(r,)), which can be rewritten as

. 1 / / ’ ! - /
(p(r))..o(ry)) = Z Z E / dri... dr[7 p(ry, ..., 7T,) H(S(rq = Th(g)- (37)
p=lfesy ©° q=1
Sy is the set of all possible surjections frofh, ...,n) to (1,..., p) andp(ry, ..., 7,) is
the p-body correlation function
PrL .. ) =Y €(@)gh(rL — Tom) .. 8(Tp — To(p)- (38)
o€S,

In the case of fermions at zero temperature, one has the correlator

2y(r) = % \/f B (Vamor). (39)

For example, using

1 2
(orop) = p? = 2 [ (Vamplrs = ral) |+ ps(r =72 (40)
|re—rol*m
together with (14), yields contibution (34), in addition to the mean-field term.
At high-impurity density £%p > 1), because of Fermi exclusion, tpebody correlation
function becomes

1 1
,o(rl,...,r,,)z,op[l—pZB(ri—rj)+O(W>i|. (42)

When (41) is used for evaluating (r1)p(r2) ... p(r,)), one indeed finds that corrections
to the mean-field terngpo)” are of order 1(p.,/p).

i<j

3.2. Absence of a pure disordered regime

We have just seen that corrections to the average magnetic field limit are less important in
the Fermi case. Could it be that the Fermi statistics of the impurities alter the occurrence
of the transition itself [4]? We are precisely going to show that, at zero temperature, the
DOS always exhibits oscillations in the whole range of the definitionr &f[O, %].

First, let us remark that the average partition function can be expressed as

NZ=F)\p,\p, o) (42)
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which means that the average DOS is a functiorEgp, A2p anda. This is due to the
fact thatg, (r) is p times a function of,/or and2?p. In (14) together with (37), rescaling
Bi into B;/B, r; into r;/1 andr; into ,/pr;, immediately leads to (42). In particular at
T, = 0, A%2Z is a function only ofA?p anda. As a consequence, & = 0, we can expand
A2Z in powers ofA%p = 27B/m)p

22Z =1+ Ja(a — DA%0 + c2(@) (A20)* + c3(@) 02p)° + - - - (43)

The striking feature for fermion &k, = 0 is thatc,(«) can be completely evaluated and
found to vanish, a generalization of the observation made in (35). To see that, use simply

(=prd)t
= 44
g(r) = pZ W+ D (44)
and conclude in general thairy, ..., r,) is at least of ordep”. In particular
p(r1, m2) = p? — [gp(r1 — T2)]? (45)

starts at ordep®, whereaso(r) = p. Therefore, no contribution of order is to be found
in {p(ry)p(ra) ... p(r,)), which means that the average partition function does not contain
terms of orderp? at any order inx.

Now in order to test oscillations in the DOS, we develop an argument given in [4],
based on the specific heat

Using the basic definition o and integrations by parts in (46), we can show, in the small
B limit, that

e [ e M VYA (EN V)
C—Co_anﬂ/O /O dEdE == g (E—ED?+ (47)

where Co(= k) is the free specific heat. ThusC (— Cp) is positive if the DOS grows
monotonically.
On the other hand, the small expansion (43), taking into accousit(«) = 0, leads to

C—Co=-— 4k(2”nf’°) WP(L—a)2+ (48)

which is negative. Therefore the average DOS always displays Landau oscillations when
the magnetic impurities obey Fermi statistics at zero temperature.

4. Conclusion

To conclude this analysis, let us emphasize again that for intermediate magnetic impurity
temperature, the average partition function has been shown in (42) to scalg\as 1
times a function ofa2p, A2p and«. This implies that the average DOS is a function
(p(E/p,2%p,a)). Since the Poisson distribution is recovered in the Boltzmann limit
T, — oo (since thenp(ry,...,r,) — p?), one interpolates between the Poisson and
zero-temperature Fermi cases simply by varyig from 0 to co. Whenx2p = 0, there

is a transition atr. >~ 0.35, whereas Whemﬁp = o0, we have just shown that no transition
occurs at all. Therefore, we expect that, f8p sufficiently small, a transition still occurs at

a critical valuex,(A2p) > 0.35, and fora2p sufficiently big, no transition occurs any more,
meaning that the system is always Landau like, in the whole intenal0, %] (figure 2).

It is not clear whether the transition observed can be interpreted as a phase transition.
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Kp
Landau
x
x

x

x xx

X x x

0 i Figure 2. ‘Phase diagram’ separating the Landau regime from the
% disordered regime. The heavy curve indicates the crossover between
o an oscillating and monotonically increasing DOS.

But magnetic impurity distributions do influence this transition by actually re-ordering the
system when the impurity density correlations are increased.
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