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Abstract. We consider an electron coupled to a random distribution of point vortices in the
plane (magnetic impurities), with a spatial probability distribution governed by Bose or Fermi
statistics at a given temperature. We analyse the effect of the statistics of the magnetic impurities
on the partition function and the density of states (DOS) of a test particle. Comparison is made
with the Poisson distribution, i.e. Bose or Fermi statistics at infinite temperature. We show in
particular that, for the zero-temperature Fermi distribution, the DOS always exhibits oscillations,
whatever the strength of the magnetic disorder, contrarily to the Poissonian case. A diagram
describing isolated impurities versus Landau level oscillations is proposed.

1. Introduction

Recently, the problem of a two-dimensional electron gas coupled to a static random magnetic
field has been a subject of interest [1–5]. Particular attention has been paid to localization
properties of such systems. In the case of Gaussian disorder with zero mean, all states seem
to be localized [2]. In contrast, they are delocalized in the case of a uniform magnetic field.
Therefore, the question arises about the role played by a mean-field description of a random
magnetic field [3, 4].

In [2], on the one hand, a Gaussian-disordered magnetic field was considered, on top
of a constant homogeneous magnetic field. A semiclassical analysis indicated that the
broadening of the Landau levels increased with the energy, so that the DOS oscillations
get exponentially damped. In [5], on the other hand, a Harper model was studied, with a
random flux per plaquette. Similar results were obtained via numerical simulations, with a
resulting flattening of the DOS with increasing disorder.

We are presently interested in a two-dimensional model for an electron of chargee

(test particle) coupled to a random magnetic field [4] consisting of a random distribution
of infinitely thin vortices, with an average densityρ. Each vortex carries a fluxφ and
modelizes some sort of magnetic impurity, characterized by the dimensionless Aharonov–
Bohm couplingα = eφ/2π (i.e. φ in unit of the quantum of flux, ¯h = 1). The model is
periodic inα with period 1 and since there is no privileged orientation of the plane, it is
invariant by changingα into −α, implying thatα can be restricted to the interval [0, 1

2].
Random magnetic impurity systems are different from [2, 5] because the magnetic field

is generated by a random distribution of point fluxes, rather than by a continuum random
field or random fluxes through the plaquettes of a lattice. In order to study these systems,
one may perturbatively evaluate inα the average one-electron partition function. It gives
information on the average DOS, since it is its Laplace transform.
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In [4], we focused on magnetic impurities obeying a Poisson distribution. The main
conclusions were:
• the DOS is a function ofE/ρ andα, so that physical properties of the model depend

only onα;
• in the limit α→ 0 (andρ →∞), the DOS exhibits a Landau levels spectrum for the

average magnetic field with degeneracyρα by unit volume;
• for α = 1

2, the DOS is analytically shown to be a monotonically increasing function
of E/ρ, without any Landau level. Moreover, it is characterized only by a depletion of
states at the bottom of the spectrum of a Lifschitz type.

So we could infer the existence of a critical valueαc distinguishing between two regimes
of the model:
• a Landau regime forα < αc, characterized by Landau oscillations of the DOS where

the mean magnetic field overbalances disorder. By Landau oscillations, we mean that the
DOS is not monotonically increasing, and thus exhibits broadened Landau levels.
• a disordered regime forα > αc, without Landau oscillations in the spectrum.
Analytical and numerical results showed thatαc > 0.29, and a numerical investigation

of the DOS gaveαc ' 0.35.
In this paper, we consider the random magnetic impurities system as a gas of particles

with a distribution obeying Fermi or Bose statistics at a temperatureTv. What we have
in mind (especially in the Fermi case) is to study the effect of density correlations of
the impurities on the DOS. With Fermi statistics, we aim to homogeneize the impurity
configurations by varyingTv, considered here as an additional disorder parameter. We expect
that this is going to affect the ‘transition’ described above. In our opinion, this approach for
studying non-local correlations of impurities should be relevant for real disordered systems.
In particular, we should expect, on a physical basis, impurities to repel each other, and a
way to model this situation is precisely to consider impurities as a gas of fermions.

We will first properly define the perturbative expansion of the average partition function.
Then, we will explicitly compute at orderα2 the contributions to the average partition
function. At that order we can explicitly see the relative contribution of the mean magnetic
field and its fluctuations, and have a first insight into the effect of density correlation on
disorder. We will generalize these considerations at any order inα, for Fermi statistics
at Tv = 0, to see how density correlations (repulsive for fermions) reduce the fluctuation
contribution. Our main result will be that in the Fermi case, at zero temperature, the average
DOS always displays Landau-like oscillations. Thus, for this type of impurity distribution,
there is no transition between an isolated impurity-disordered regime and a mean magnetic
field regime, contrarily to the Poissonian case.

2. The model

2.1. General formalism

Let us consider an electron coupled to a random magnetic field given by a distributionρ(r)
of magnetic impurities. This means thatρ(r) dr is the number of impurities at positionr
in the infinitesimal volume d2r. The Hamiltonian is given by

H = 1

2m

(
p− α

∫
d2r′ ρ(r′)

k × (r − r′)
|r − r′|2

)2

∓ α

m
ρ(r) (1)

where we have explicitly taken into account the coupling of the magnetic field to the spin-up
(−) or down(+) degree of freedom of the electron.
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In the case of a discrete distributionρ(r) =∑i δ(r−ri ), i.e. points randomly dropped
on the plane, where the indexi indices the impurities, the spin term is a sum of contact terms.
It corresponds to a choice of a peculiar self-adjoint extension [6]: in the spin-down case,
the wavefunctions vanish at the location of the impurities (hard-core boundary condition),
whereas in the spin-up case singular wavefunctions are considered at the location of the
impurities (attractive-core conditions). In order to extract the short-distance behaviour of
the wavefunctions, a non-unitary wavefunction redefinition has been used [7]:

ψN(r) =
N∏
i=1

|r − ri |±αψ̃N(r). (2)

The generalization of this transformation to the continuous distributionρ(r) introduced
in (1) is

ψ(r) = e±α
∫

d2r′ ρ(r′) ln |r−r′|ψ̃(r). (3)

The HamiltonianH̃ acting onψ̃(r) rewrites

H̃d = − 2

m
∂z∂z̄ − 2α

m

∫
dz′ dz̄′

ρ(z′, z̄′)
z̄− z̄′ ∂z (4)

H̃u = − 2

m
∂z∂z̄ + 2α

m

∫
dz′ dz̄′

ρ(z′, z̄′)
z − z′ ∂z̄ (5)

where the complex coordinates in the plane have been usedz = x + iy, ∂z = 1
2(∂x − i∂y)

and dz dz̄ = d2r. H or H̃ can be used indifferently to compute the partition function,
since it is by definition the trace of a function ofH . In the sequel we will concentrate
on the spin-down coupling, keeping in mind that the spin-up analysis could be easily done
following the same lines.

Until now the statistical properties of the distribution{ri} in ρ(r) have not been
specified. If a Poissonian distribution is chosen, the statistical properties ofρ(r) are defined
by the cumulants†

ρ(r1) . . . ρ(rk) = ρδ(r1− r2)δ(r2− r3) . . . δ(rk−1− rk). (6)

Here however, we deal with quantum statistics for the impurities themselves, soρ(r) has
to be defined as an operator

ρ(r) = ψ+(r)ψ(r) (7)

with

ψ(r) = 1

2π

∫
d2k a(k)e−ikr (8)

ψ+(r) = 1

2π

∫
d2k a+(k)eikr (9)

a+(k) anda(k) are the creation and annihilation Fock space particle operators of momentum
k, with the commutation rules

[a(k), a+(k′)] = δ(k − k′) (10)

for bosons, and

{a(k), a+(k′)} = δ(k − k′) (11)

† For a Gaussian magnetic field [2], all the cumulants vanish except the first and second, which has to be contrasted
with the Poissonian cumulants given in (6).
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for fermions.
Thus, the impurities, considered as a quantum gas, have a temperatureTv and chemical

potentialµ, which determines their mean densityρ. The average over disorder of an
operatorQ consists of

〈Q〉 = Tr [e−βvHvQ]

Tr [e−βvHv ]
(12)

where the impurity second-quantized Hamiltonian

Hv =
∫

d2k

(
k2

2m
− µ

)
a+(k)a(k) (13)

describes the equilibrium state of the impurity gas in the grand-canonical ensemble. Note
that we consider here quenched impurities, which are in thermodynamical equilibrium.
Note also that the Poissonian distribution dP(ri ) = dri/V can be seen as the particular
case of Bose distribution atTv = 0. The impurities indeed condensate in the zero-energy
N -body wavefunctionψ(r1, r2, . . . , rN) = ( 1√

V
)N , leading to theN -impurity Poissonian

distribution dP ≡ ψ∗(r1, r2, . . . , rN)ψ(r1, r2, . . . , rN) dr1 dr2 . . .drN =
∏N
i=1

dri
V

.
We wish to evaluate perturbatively the average one-electron partition function at inverse

temperatureβ. From (4) one has

〈r|e−βH̃ |r〉 =
∞∑
p=0

(
2α

m

)p ∫ β

0
dβ1 . . .

∫ βp−1

0
dβp Gβ−β1(r, r1)ψ

+(r′1)ψ(r
′
1)

× ∂z1

z̄1− z̄′1
Gβ1−β2(r1, r2) . . . ψ

+(r′p)ψ(r
′
p)

∂zp

z̄p − z̄′p
Gβp(rp, r) (14)

where integrations over the position variablesri andr′i are implicit. Gβ(r1, r2) is the free
electron propagator

Gβ(r1, r2) = m

2πβ
e−

m
2β |r1−r2|2. (15)

Averaging over disorder yields expressions like

〈ρ(r′1) . . . ρ(r′p)〉 =
Tr[e−βvHvψ+(r′1)ψ(r

′
1) . . . ψ

+(r′p)ψ(r
′
p)]

Tr[e−βvHv ]
which can be evaluated using the contractions

±g±f (r, r′) = 〈ψ(r)ψ+(r′)〉 =
∫

d2k

4π2
(1± nk)eik(r−r′) (16)

g±b (r, r
′) = 〈ψ+(r)ψ(r′)〉 =

∫
d2k

4π2
nkeik(r−r′) (17)

nk stands for the Bose–Einstein (upper sign) or Fermi–Dirac (lower sign) distributions.

nk = 1

eβv(k2/2m−µ) ∓ 1
. (18)

One has the relation

g±f (r, r
′) = g±b (r, r′)± δ(r − r′). (19)

To summarize, the perturbative expansion of the one-electron average partition function
can be represented in terms of Feynmann diagrams given by rules analogous to those of a
finite temperature second-quantized formalism

electron line:Gβ(ri , rj )
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forward impurity line: g±f (r
′
i , r
′
σ(i))

backward impurity line:g±b (r
′
i , r
′
σ(i))

impurity tadpole:g±b (r
′
i , r
′
i ) = ρ

electron-impurity vertex:2α
m

1
z̄i−z̄′i ∂zi .

For a given diagram of orderp, the electron propagates from its initial to its final position
r via rp, rp−1, . . . , r1, the location of electron-impurity interaction, with temperatures
0, βp, . . . , β1, β. The p vortices located at positionr′1 . . . r

′
p, undergo a permutationσ .

At eachσ(i) corresponds a vortex line
backward line ifσ(i) > i

forward line if σ(i) < i

and a tadpole ifσ(i) = i.
In the Fermi case, each diagram is affected by the signature of the permutationσ .
The dimensionless parameters at work are the rescaled average impurity densityλ2ρ in

units of the electron thermal wavelengthλ2 = 2πβ/m, the rescaled average densityλ2
vρ in

units of the impurity thermal wavelengthλ2
v = 2πβv/m, and the Aharonov–Bohm coupling

constantα.
Clearly, one expects that in the limitβv → 0, i.e. Boltzmann statistics, with uncorrelated

randomly dropped impurities, one recovers the Poisson distribution. Also, as already
advocated above, one expects that in the limitβv → ∞, in the Bose case, one has again
the Poisson distribution, whereas the Fermi distribution leads to a less disordered situation.
In the sequel, one will concentrate on the relative interplay between the dimensionless
parametersλ2ρ, λ2

vρ, α.

2.2. Mean-field expansion

Consider first diagrams that are entirely built by impurity tadpoles (figure 1(a)). These
diagrams do not involve the many-body statistical correlations of the impurity distribution,
and are thus independent of the statistics. Therefore, they yield the same contribution as in
the Poisson case [4].

The orderαp(p > 0) term writes

Z
(p)

〈B〉 = −
1

λ2

ζ(1− p)
(p − 1)!

(−λ2ρα)p.

Summation overp yields, as it should, the partition function per unit volume of the mean
magnetic fielde〈B〉 = 2πρα (i.e. in the mean-field limitα→ 0, ρ →∞, ρα finite)

Z〈B〉 =
∞∑
p=0

Z
(p)

〈B〉 =
e〈B〉
2π

1

2 sinhβ e〈B〉2m

exp

(
−β e〈B〉

2m

)
(20)

Figure 1. Diagrams contributing at second order: (a) mean-field diagram (b) disorder diagram.
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whereZ(0)〈B〉 = 1/λ2 is the free partition function per unit volume. The positive shift in
the Landau spectrum is a direct manifestation of the hard-core boundary conditions on the
wavefunctions [4].

In the sequel, we will evaluate corrections to the mean-field partition function, which
are responsible for mixing and broadening the Landau levels, and compare them with the
Poissonian case.

2.3. Second-order expansion

To see the effect of fluctuations, we have to evaluate the partition function at least at second
order inα, because the first order does not involve correlations of the magnetic field. Let us
first recall the expression of the partition function up to second order inα for the Poissonian
case [4]

λ2Z = 1− 1

2
λ2ρα + 1

2
(λ2ρ)2α2

(
1

6
+ 1

λ2ρ

)
+ · · · (21)

which we can rewrite

Z = Z(0)〈B〉 + Z(1)〈B〉 + Z(2)〈B〉 + 1
2ρα

2+ · · · . (22)

The last term on the right-hand side of (22) represents the first contribution due to
fluctuations and vanishes like 1/ρ in the mean-field limitρ → ∞, α → 0, with αρ kept
fixed.

The corresponding term in the case of Bose or Fermi statistics is given by the diagram
represented in figure 1(b). Its expression is

D(z) ≡ ±
(

2α

m

)2 ∫ β

0
dβ1

∫ β1

0
dβ2

∫
d2r1 d2r2 d2r′1 d2r′2Gβ−β1(r, r1)gb(r

′
1, r
′
2)

× ∂z1

z̄1− z̄′1
Gβ1−β2(r1, r2)gf (r

′
2, r
′
1)

∂z2

z̄2− z̄′2
Gβ2(r2, r)

wherez is the fugacityz = ∓eβvµ. In the intervalz ∈] − 1, 1] one has the expansion

n(k) = ±
∞∑
n=1

(−z)ne−nβv k
2

2m . (23)

As a result

gf (r, r
′) = δ(r − r′)+

∞∑
n=1

(−z)nGnβv (r, r
′) (24)

gb(r, r
′) = ±

∞∑
n=1

(−z)nGnβv (r, r
′). (25)

The densityρ is related toz by

ρ = ∓ 1

λ2
v

ln(1+ z). (26)

Using (24), (25), the contributionD(z) of the diagram of figure 1(b) is

D(z) = ρα2

2
− mα

2

4βv

∞∑
n=1
p=1

(−z)n+p
n+ p

(
1−

∫ 1

0
dx

xnp

xnp + x(1− x)
)

(27)

wherexnp = np

n+p
βv
β

.
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At high temperature (Tv > T ), in the Boltzmann limit, i.e.z→ 0 in both the Bose and
Fermi cases, one getsD(z) → ρα2/2, which is precisely the Poisson distribution result.
The correction reads

D(z) = ρα2

2

(
1− π

2
λ2
vρ
)
+ · · · . (28)

Let us now concentrate on the low-temperature limit (Tv < T, xnp → +∞). In that
case,D(z) rewrites as

D(z) = ρα2

2

[
1∓

∞∑
q=1

q−1∑
m=0

(−λ2ρ)q
(q!)2

(2q + 1)!
Cmq−1

hq−m(z)hm+1(z)

[ln(1+ z)]q+1

]
(29)

where the functionshq(z)’s are defined in the interval ]− 1, 1] by

hq(z) =
∞∑
n=1

(−z)n
nq

(30)

and theCmq−1’s are the binomial coefficients. The low-temperature limit corresponds to
z → −1 in the Bose case andz → +∞ in the Fermi case. It happens that (30), and
therefore (29) can be analytically continuated in ]− 1,+∞[ by noticing that

h0(z) = − z

1+ z (31)

and by using the recursive relation

hq+1(z) =
∫ z

0

hq(x)

x
dx. (32)

It follows that the expansion

hq(z) = − (ln z)
q

q!
+ 2

E(q/2)∑
n=1

h2n(1)
(ln z)q−2n

(q − 2n)!
− (−1)q

∞∑
n=1

(−1)n

nq

1

zn
(33)

is valid for z > 1.
Which contributions doesD(z) yield in the lowTv limit? In the Bose case, some care

is required, since in (29) the limitz → 0 cannot be interchanged with summations. We
checked numerically that (29) indeed yieldsρα2/2, i.e. the Poissonian result as expected.
In the Fermi case, (29), (33) yield

lim
z→+∞D(z) =

ρα2

2

[
1− 1

λ2ρ

(
1+ λ2ρ − e−λ

2ρ − 2
√
λ2ρ

∫ √λ2ρ

0
dy e−y

2

)]
. (34)

At this point one can consider either a low-impurity density limitλ2ρ � 1, or a high-
impurity density limit λ2ρ � 1. At low densityλ2ρ << 1, one finds that the average
partition function per unit volume rewrites as

λ2Z = 1− 1

2
λ2ρα + 1

2
(λ2ρ)2α2

(
1

λ2ρ
+ 1

30
λ2ρ + · · ·

)
+ · · · . (35)

Comparing with (21), we see that there is noρ2α2 term, a situation quite different from
the Poissonian case, where this term is precisely the leading mean magnetic field term. We
will come back to this point later.

On the other hand, to see how the system reaches the mean-field limit, we have to use
the high-density expansion (λ2ρ � 1). Equation (34) leads to

Z = Z(0)〈B〉 + Z(1)〈B〉 + Z(2)〈B〉 +
1

2
ρα2

(√
π

λ2ρ
− 1

λ2ρ
+ · · ·

)
+ · · · (36)

where the corrections due to fluctuations at second order inα are explicitly given.
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3. Fermi case at zero temperature: The Landau regime

3.1. The ordered regime

Before the system reaches the mean-field limit (20), we expect [4] an intermediate regime
characterized by smooth Landau oscillations in the spectrum. This intermediate regime
is identified as ordered by opposition to the one with no oscillation (disordered regime).
The orderα2 is quite instructive to give information on the way the system reaches the
mean-field limit. Consider indeed the case of Poissonian impurities (22). We observe 1/ρ

corrections to the mean field at any order of the perturbative expansion in(αρ)n. On the
other hand, (36) shows corrections to the mean field of order 1/(ρ

√
ρ). This implies that

the system approaches more rapidly its mean-field limit when the impurities are fermions
at zero temperature, rather than Poissonian. In other words, the system is less disordered,
since a Fermi distribution of impurities is more homogeneous than a Poissonian one.

Let us generalize these considerations at any order of perturbative theory inα. One has
to evaluate〈ρ(r1)ρ(r2) . . . ρ(rn)〉, which can be rewritten as

〈ρ(r1)..ρ(rn)〉 =
n∑

p=1

∑
f∈Spn

1

p!

∫
dr′1 . . .dr

′
p ρ(r

′
1, . . . , r

′
p)

n∏
q=1

δ(rq − r′f (q)). (37)

S
p
n is the set of all possible surjections from(1, . . . , n) to (1, . . . , p) andρ(r1, . . . , rp) is

thep-body correlation function

ρ(r1, . . . , rp) =
∑
σ∈Sp

ε(σ )gb(r1− rσ(1)) . . . gb(rp − rσ(p)). (38)

In the case of fermions at zero temperature, one has the correlator

gb(r) = 1

r

√
ρ

π
J1

(√
4πρr

)
. (39)

For example, using

〈ρ(r1)ρ(r2)〉 = ρ2− 1

|r1− r2|2
ρ

π

[
J1

(√
4πρ|r1− r2|

)]2
+ ρδ(r1− r2) (40)

together with (14), yields contibution (34), in addition to the mean-field term.
At high-impurity density (λ2ρ � 1), because of Fermi exclusion, thep-body correlation

function becomes

ρ(r1, . . . , rp) = ρp
[

1− 1

ρ

∑
i<j

δ(ri − rj )+O

(
1

ρ
√
ρ

)]
. (41)

When (41) is used for evaluating〈ρ(r1)ρ(r2) . . . ρ(rn)〉, one indeed finds that corrections
to the mean-field term(ρα)n are of order 1/(ρ

√
ρ).

3.2. Absence of a pure disordered regime

We have just seen that corrections to the average magnetic field limit are less important in
the Fermi case. Could it be that the Fermi statistics of the impurities alter the occurrence
of the transition itself [4]? We are precisely going to show that, at zero temperature, the
DOS always exhibits oscillations in the whole range of the definition ofα ∈ [0, 1

2].
First, let us remark that the average partition function can be expressed as

λ2Z = F(λ2ρ, λ2
vρ, α) (42)
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which means that the average DOS is a function ofE/ρ, λ2
vρ andα. This is due to the

fact thatgb(r) is ρ times a function of
√
ρr andλ2

vρ. In (14) together with (37), rescaling
βi into βi/β, ri into ri/λ and r′i into

√
ρr′i , immediately leads to (42). In particular at

Tv = 0, λ2Z is a function only ofλ2ρ andα. As a consequence, atTv = 0, we can expand
λ2Z in powers ofλ2ρ = (2πβ/m)ρ

λ2Z = 1+ 1
2α(α − 1)λ2ρ + c2(α)(λ

2ρ)2+ c3(α)(λ
2ρ)3+ · · · . (43)

The striking feature for fermion atTv = 0 is thatc2(α) can be completely evaluated and
found to vanish, a generalization of the observation made in (35). To see that, use simply

gb(r) = ρ
∞∑
k=0

(−πρr2)k

k!(k + 1)!
(44)

and conclude in general thatρ(r1, . . . , rp) is at least of orderρp. In particular

ρ(r1, r2) = ρ2− [gb(r1− r2)]
2 (45)

starts at orderρ3, whereasρ(r) = ρ. Therefore, no contribution of orderρ2 is to be found
in 〈ρ(r1)ρ(r2) . . . ρ(rn)〉, which means that the average partition function does not contain
terms of orderρ2 at any order inα.

Now in order to test oscillations in the DOS, we develop an argument given in [4],
based on the specific heat

C = kβ2 d2

dβ2
lnZ. (46)

Using the basic definition ofZ and integrations by parts in (46), we can show, in the small
β limit, that

C − C0 = 2π2kβ2
∫ ∞

0

∫ ∞
0

dE dE′
d〈ρ(E)/V 〉

dE

d〈ρ(E′)/V 〉
dE′

(E − E′)2+ · · · (47)

whereC0(= k) is the free specific heat. Thus, (C − C0) is positive if the DOS grows
monotonically.

On the other hand, the smallβ expansion (43), taking into accountc2(α) = 0, leads to

C − C0 = −1

4
k

(
2πβρ

m

)2

α2(1− α)2+ · · · (48)

which is negative. Therefore the average DOS always displays Landau oscillations when
the magnetic impurities obey Fermi statistics at zero temperature.

4. Conclusion

To conclude this analysis, let us emphasize again that for intermediate magnetic impurity
temperature, the average partition function has been shown in (42) to scale as 1/λ2

times a function ofλ2ρ, λ2
vρ and α. This implies that the average DOS is a function

〈ρ(E/ρ, λ2
vρ, α)〉. Since the Poisson distribution is recovered in the Boltzmann limit

Tv → ∞ (since thenρ(r1, . . . , rp) → ρp), one interpolates between the Poisson and
zero-temperature Fermi cases simply by varyingλ2

vρ from 0 to∞. Whenλ2
vρ = 0, there

is a transition atαc ' 0.35, whereas whenλ2
vρ = ∞, we have just shown that no transition

occurs at all. Therefore, we expect that, forλ2
vρ sufficiently small, a transition still occurs at

a critical valueαc(λ2
vρ) > 0.35, and forλ2

vρ sufficiently big, no transition occurs any more,
meaning that the system is always Landau like, in the whole intervalα ∈ [0, 1

2] (figure 2).
It is not clear whether the transition observed can be interpreted as a phase transition.
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Figure 2. ‘Phase diagram’ separating the Landau regime from the
disordered regime. The heavy curve indicates the crossover between
an oscillating and monotonically increasing DOS.

But magnetic impurity distributions do influence this transition by actually re-ordering the
system when the impurity density correlations are increased.
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